Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Bone Res ; 11(1): 51, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37848449

ABSTRACT

Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux). Osteomyelitis was confirmed by CFU on the explants and longitudinal bioluminescent imaging (BLI) after debridement and implant exchange surgery on day 7, and mice were randomized into seven groups: 1) Baseline (harvested at day 7, no treatment); 2) HPBP (bisphosphonate control for BCS) + vancomycin; 3) HPHBP (hydroxybisphosphonate control for HBCS) + vancomycin; 4) vancomycin; 5) sitafloxacin; 6) BCS + vancomycin; and 7) HBCS + vancomycin. BLI confirmed infection persisted in all groups except for mice treated with BCS or HBCS + vancomycin. Radiology revealed catastrophic femur fractures in all groups except mice treated with BCS or HBCS + vancomycin, which also displayed decreases in peri-implant bone loss, osteoclast numbers, and biofilm. To confirm this, we assessed the efficacy of vancomycin, sitafloxacin, and HBCS monotherapy in a transtibial implant model. The results showed complete lack of vancomycin efficacy while all mice treated with HBCS had evidence of infection control, and some had evidence of osseous integrated septic implants, suggestive of biofilm eradication. Taken together these studies demonstrate that HBCS adjuvant with standard of care debridement and vancomycin therapy has the potential to eradicate MRSA osteomyelitis.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Osteomyelitis , Staphylococcal Infections , Mice , Animals , Vancomycin/therapeutic use , Methicillin/therapeutic use , Anti-Bacterial Agents/pharmacology , Methicillin Resistance , Staphylococcal Infections/drug therapy , Osseointegration , Disease Models, Animal , Osteomyelitis/drug therapy
2.
Res Sq ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214929

ABSTRACT

Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux). Osteomyelitis was confirmed by CFU on the explants and longitudinal bioluminescent imaging (BLI) after debridement and implant exchange surgery on day 7, and mice were randomized into seven groups: 1) Baseline (harvested at day 7, no treatment); 2) HPBP (bisphosphonate control for BCS) + vancomycin; 3) HPHBP (bisphosphonate control for HBCS) + vancomycin; 4) vancomycin; 5) sitafloxacin; 6) BCS + vancomycin; and 7) HBCS + vancomycin. BLI confirmed infection persisted in all groups except for mice treated with BCS or HBCS + vancomycin. Radiology revealed catastrophic femur fractures in all groups except mice treated with BCS or HBCS + vancomycin, which also displayed decreases in peri-implant bone loss, osteoclast numbers, and biofilm. To confirm this, we assessed the efficacy of vancomycin, sitafloxacin, and HBCS monotherapy in a transtibial implant model. The results showed complete lack of vancomycin efficacy, while all mice treated with HBCS had evidence of infection control, and some had evidence of osseous integrated septic implants, suggestive of biofilm eradication. Taken together these studies demonstrate that HBCS adjuvant with standard of care debridement and vancomycin therapy has the potential to eradicate MRSA osteomyelitis.

3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768310

ABSTRACT

Osteomyelitis is a limb- and life-threatening orthopedic infection predominantly caused by Staphylococcus aureus biofilms. Bone infections are extremely challenging to treat clinically. Therefore, we have been designing, synthesizing, and testing novel antibiotic conjugates to target bone infections. This class of conjugates comprises bone-binding bisphosphonates as biochemical vectors for the delivery of antibiotic agents to bone minerals (hydroxyapatite). In the present study, we utilized a real-time impedance-based assay to study the growth of Staphylococcus aureus biofilms over time and to test the antimicrobial efficacy of our novel conjugates on the inhibition of biofilm growth in the presence and absence of hydroxyapatite. We tested early and newer generation quinolone antibiotics (ciprofloxacin, moxifloxacin, sitafloxacin, and nemonoxacin) and several bisphosphonate-conjugated versions of these antibiotics (bisphosphonate-carbamate-sitafloxacin (BCS), bisphosphonate-carbamate-nemonoxacin (BCN), etidronate-carbamate-ciprofloxacin (ECC), and etidronate-carbamate-moxifloxacin (ECX)) and found that they were able to inhibit Staphylococcus aureus biofilms in a dose-dependent manner. Among the conjugates, the greatest antimicrobial efficacy was observed for BCN with an MIC of 1.48 µg/mL. The conjugates demonstrated varying antimicrobial activity depending on the specific antibiotic used for conjugation, the type of bisphosphonate moiety, the chemical conjugation scheme, and the presence or absence of hydroxyapatite. The conjugates designed and tested in this study retained the bone-binding properties of the parent bisphosphonate moiety as confirmed using high-performance liquid chromatography. They also retained the antimicrobial activity of the parent antibiotic in the presence or absence of hydroxyapatite, albeit at lower levels due to the nature of their chemical modification. These findings will aid in the optimization and testing of this novel class of drugs for future applications to pharmacotherapy in osteomyelitis.


Subject(s)
Osteomyelitis , Staphylococcal Infections , Humans , Staphylococcus aureus , Diphosphonates/therapeutic use , Moxifloxacin , Etidronic Acid/therapeutic use , Electric Impedance , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Osteomyelitis/drug therapy , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Biofilms , Durapatite/chemistry , Microbial Sensitivity Tests
4.
Lancet Reg Health Southeast Asia ; 8: 100095, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36267800

ABSTRACT

Background: The course of the COVID-19 pandemic has been driven by several dynamic behavioral, immunological, and viral factors. We used mathematical modeling to explore how the concurrent reopening of schools, increasing levels of hybrid immunity, and the emergence of the Omicron variant affected the trajectory of the pandemic in India, using Andhra Pradesh (pop: 53 million) as an exemplar Indian state. Methods: We constructed an age- and contact-structured compartmental model that allows for individuals to proceed through various states depending on whether they have received zero, one, or two doses of the COVID-19 vaccine. We calibrated our model using results from another model (i.e., INDSCI-SIM) as well as available context-specific serosurvey data. The introduction of the Omicron variant is modelled alongside protection gained from hybrid immunity. We predict disease dynamics in the background of hybrid immunity coming from infections and an ongoing vaccination program, given prior levels of seropositivity from earlier waves of infection. We describe the consequences of school reopening on cases across different age-bands, as well as the impact of the Omicron (BA.2) variant. Findings: We show the existence of an epidemic peak in India that is strongly related to the value of background seroprevalence. As expected, because children were not vaccinated in India, re-opening schools increases the number of cases in children more than in adults, although in all scenarios, the peak number of active hospitalizations was never greater than 0.45 times the corresponding peak in the Delta wave before schools were reopened. We varied the level of infection induced seropositivity in our model and found the height of the peak associated with schools reopening reduced as background infection-induced seropositivity increased from 20% to 40%. At reported values of seropositivity of 64% from representative surveys done in India, no discernible peak was observed. We also explored counterfactual scenarios regarding the effect of vaccination on hybrid immunity. We found that in the absence of vaccination, even at high levels of seroprevalence (>60%), the emergence of the Omicron variant would have resulted in a large rise in cases across all age bands by as much as 1.8 times. We conclude that the presence of high levels of hybrid immunity resulted in fewer cases in the Omicron wave than in the Delta wave. Interpretation: In India, decreasing prevalence of immunologically naïve individuals of all ages was associated with fewer cases reported once schools were reopened. In addition, hybrid immunity, together with the lower intrinsic severity of disease associated with the Omicron variant, contributed to low reported COVID-19 hospitalizations and deaths. Funding: World Health Organization, Mphasis.

5.
Commun Med (Lond) ; 2: 112, 2022.
Article in English | MEDLINE | ID: mdl-36082175

ABSTRACT

Background: Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare but serious side effect of nitrogen-containing bisphosphonate drugs (N-BPs) frequently prescribed to reduce skeletal-related events in bone malignancies and osteoporosis. BRONJ is associated with abnormal oral wound healing after dentoalveolar surgery and tooth extraction. We previously found that N-BP chemisorbed to bone mineral hydroxyapatite was dissociated by secondary applied N-BP. This study investigated the effect of the surface equilibrium-based removal of N-BP from jawbone on tooth extraction wound healing of zoledronate (ZOL)-treated mice. Methods: A pharmacologically inactive N-BP derivative (the 4-pyridyl isomer of risedronate equipped with a near-infrared 800CW fluorescent imaging dye, 800CW-pRIS) was designed and synthesized. 800CW-pRIS was intra-orally injected or topically applied in a deformable nano-scale vesicle formulation (DNV) to the palatal tissue of mice pretreated with ZOL, a potent N-BP. The female C56BL6/J mice were subjected to maxillary molar extraction and oral wound healing was compared for 800CW-pRIS/ZOL, ZOL and untreated control groups. Results: 800CW-pRIS is confirmed to be inactive in inhibiting prenylation in cultured osteoclasts while retaining high affinity for hydroxyapatite. ZOL-injected mice exhibit delayed tooth extraction wound healing with osteonecrosis relative to the untreated controls. 800CW-pRIS applied topically to the jaw one week before tooth extraction significantly reduces gingival oral barrier inflammation, improves extraction socket bone regeneration, and prevents development of osteonecrosis in ZOL-injected mice. Conclusions: Topical pre-treatment with 800CW-RIS in DNV is a promising approach to prevent the complication of abnormal oral wound healing associated with BRONJ while retaining the anti-resorptive benefit of legacy N-BP in appendicular or vertebrate bones.

6.
Elife ; 112022 08 26.
Article in English | MEDLINE | ID: mdl-36017995

ABSTRACT

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) presents as a morbid jawbone lesion in patients exposed to a nitrogen-containing bisphosphonate (N-BP). Although it is rare, BRONJ has caused apprehension among patients and healthcare providers and decreased acceptance of this antiresorptive drug class to treat osteoporosis and metastatic osteolysis. We report here a novel method to elucidate the pathological mechanism of BRONJ by the selective removal of legacy N-BP from the jawbone using an intra-oral application of hydroxymethylene diphosphonate (HMDP) formulated in liposome-based deformable nanoscale vesicles (DNV). After maxillary tooth extraction, zoledronate-treated mice developed delayed gingival wound closure, delayed tooth extraction socket healing and increased jawbone osteonecrosis consistent with human BRONJ lesions. Single cell RNA sequencing of mouse gingival cells revealed oral barrier immune dysregulation and unresolved proinflammatory reaction. HMDP-DNV topical applications to nascent mouse BRONJ lesions resulted in accelerated gingival wound closure and bone socket healing as well as attenuation of osteonecrosis development. The gingival single cell RNA sequencing demonstrated resolution of chronic inflammation by increased anti-inflammatory signature gene expression of lymphocytes and myeloid-derived suppressor cells. This study suggests that BRONJ pathology is related to N-BP levels in jawbones and demonstrates the potential of HMDP-DNV as an effective BRONJ therapy.


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Animals , Bisphosphonate-Associated Osteonecrosis of the Jaw/etiology , Bisphosphonate-Associated Osteonecrosis of the Jaw/pathology , Bisphosphonate-Associated Osteonecrosis of the Jaw/therapy , Diphosphonates/adverse effects , Humans , Liposomes , Mice , Nitrogen , Zoledronic Acid
7.
Front Cell Infect Microbiol ; 12: 910970, 2022.
Article in English | MEDLINE | ID: mdl-35811672

ABSTRACT

S. aureus infection of bone is difficult to eradicate due to its ability to colonize the osteocyte-lacuno-canalicular network (OLCN), rendering it resistant to standard-of-care (SOC) antibiotics. To overcome this, we proposed two bone-targeted bisphosphonate-conjugated antibiotics (BCA): bisphosphonate-conjugated sitafloxacin (BCS) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS). Initial studies demonstrated that the BCA kills S. aureus in vitro. Here we demonstrate the in vivo efficacy of BCS and HBCS versus bisphosphonate, sitafloxacin, and vancomycin in mice with implant-associated osteomyelitis. Longitudinal bioluminescent imaging (BLI) confirmed the hypothesized "target and release"-type kinetics of BCS and HBCS. Micro-CT of the infected tibiae demonstrated that HBCS significantly inhibited peri-implant osteolysis versus placebo and free sitafloxacin (p < 0.05), which was not seen with the corresponding non-antibiotic-conjugated bisphosphonate control. TRAP-stained histology confirmed that HBCS significantly reduced peri-implant osteoclast numbers versus placebo and free sitafloxacin controls (p < 0.05). To confirm S. aureus killing, we compared the morphology of S. aureus autolysis within in vitro biofilm and infected tibiae via transmission electron microscopy (TEM). Live bacteria in vitro and in vivo presented as dense cocci ~1 µm in diameter. In vitro evidence of autolysis presented remnant cell walls of dead bacteria or "ghosts" and degenerating (non-dense) bacteria. These features of autolyzed bacteria were also present among the colonizing S. aureus within OLCN of infected tibiae from placebo-, vancomycin-, and sitafloxacin-treated mice, similar to placebo. However, most of the bacteria within OLCN of infected tibiae from BCA-treated mice were less dense and contained small vacuoles and holes >100 nm. Histomorphometry of the bacteria within the OLCN demonstrated that BCA significantly increased their diameter versus placebo and free antibiotic controls (p < 0.05). As these abnormal features are consistent with antibiotic-induced vacuolization, bacterial swelling, and necrotic phenotype, we interpret these findings to be the initial evidence of BCA-induced killing of S. aureus within the OLCN of infected bone. Collectively, these results support the bone targeting strategy of BCA to overcome the biodistribution limits of SOC antibiotics and warrant future studies to confirm the novel TEM phenotypes of bacteria within OLCN of S. aureus-infected bone of animals treated with BCS and HBCS.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Osteomyelitis , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Disease Models, Animal , Fluoroquinolones , Mice , Osteomyelitis/drug therapy , Osteomyelitis/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus , Tissue Distribution , Vancomycin/pharmacology
8.
Bone ; 156: 116289, 2022 03.
Article in English | MEDLINE | ID: mdl-34896359

ABSTRACT

The bisphosphonates ((HO)2P(O)CR1R2P(O)(OH)2, BPs) were first shown to inhibit bone resorption in the 1960s, but it was not until 30 years later that a detailed molecular understanding of the relationship between their varied chemical structures and biological activity was elucidated. In the 1990s and 2000s, several potent bisphosphonates containing nitrogen in their R2 side chains (N-BPs) were approved for clinical use including alendronate, risedronate, ibandronate, and zoledronate. These are now mostly generic drugs and remain the leading therapies for several major bone-related diseases, including osteoporosis and skeletal-related events associated with bone metastases. The early development of chemistry in this area was largely empirical and only a few common structural features related to strong binding to calcium phosphate were clear. Attempts to further develop structure-activity relationships to explain more dramatic pharmacological differences in vivo at first appeared inconclusive, and evidence for mechanisms underlying cellular effects on osteoclasts and macrophages only emerged after many years of research. The breakthrough came when the intracellular actions on the osteoclast were first shown for the simpler bisphosphonates, via the in vivo formation of P-C-P derivatives of ATP. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates in the 1980s and 1990s led to the key discovery that the antiresorptive effects of these more complex analogs on osteoclasts result mostly from their potency as inhibitors of the enzyme farnesyl diphosphate synthase (FDPS/FPPS). This key branch-point enzyme in the mevalonate pathway of cholesterol biosynthesis is important for the generation of isoprenoid lipids that are utilized for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Since then, it has become even more clear that the overall pharmacological effects of individual bisphosphonates on bone depend upon two key properties: the affinity for bone mineral and inhibitory effects on biochemical targets within bone cells, in particular FDPS. Detailed enzyme-ligand crystal structure analysis began in the early 2000s and advances in our understanding of the structure-activity relationships, based on interactions with this target within the mevalonate pathway and related enzymes in osteoclasts and other cells have continued to be the focus of research efforts to this day. In addition, while many members of the bisphosphonate drug class share common properties, now it is more clear that chemical modifications to create variations in these properties may allow customization of BPs for different uses. Thus, as the appreciation for new potential opportunities with this drug class grows, new chemistry to allow ready access to an ever-widening variety of bisphosphonates continues to be developed. Potential new uses of the calcium phosphate binding mechanism of bisphosphonates for the targeting of other drugs to the skeleton, and effects discovered on other cellular targets, even at non-skeletal sites, continue to intrigue scientists in this research field.


Subject(s)
Bone Neoplasms , Diphosphonates , Bone Neoplasms/drug therapy , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Humans , Mevalonic Acid/metabolism , Nitrogen , Structure-Activity Relationship
9.
Antibiotics (Basel) ; 10(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204351

ABSTRACT

The use of local antibiotics to treat bone infections has been questioned due to a lack of clinical efficacy and emerging information about Staphylococcus aureus colonization of the osteocyte-lacuno canalicular network (OLCN). Here we propose bisphosphonate-conjugated antibiotics (BCA) using a "target and release" approach to deliver antibiotics to bone infection sites. A fluorescent bisphosphonate probe was used to demonstrate bone surface labeling adjacent to bacteria in a S. aureus infected mouse tibiae model. Bisphosphonate and hydroxybisphosphonate conjugates of sitafloxacin and tedizolid (BCA) were synthesized using hydroxyphenyl and aminophenyl carbamate linkers, respectively. The conjugates were adequately stable in serum. Their cytolytic activity versus parent drug on MSSA and MRSA static biofilms grown on hydroxyapatite discs was established by scanning electron microscopy. Sitafloxacin O-phenyl carbamate BCA was effective in eradicating static biofilm: no colony formation units (CFU) were recovered following treatment with 800 mg/L of either the bisphosphonate or α-hydroxybisphosphonate conjugated drug (p < 0.001). In contrast, the less labile tedizolid N-phenyl carbamate linked BCA had limited efficacy against MSSA, and MRSA. CFU were recovered from all tedizolid BCA treatments. These results demonstrate the feasibility of BCA eradication of S. aureus biofilm on OLCN bone surfaces and support in vivo drug development of a sitafloxacin BCA.

10.
PLoS Comput Biol ; 17(7): e1009126, 2021 07.
Article in English | MEDLINE | ID: mdl-34292931

ABSTRACT

COVID-19 testing across India uses a mix of two types of tests. Rapid Antigen Tests (RATs) are relatively inexpensive point-of-care lateral-flow-assay tests, but they are also less sensitive. The reverse-transcriptase polymerase-chain-reaction (RT-PCR) test has close to 100% sensitivity and specificity in a laboratory setting, but delays in returning results, as well as increased costs relative to RATs, may vitiate this advantage. India-wide, about 49% of COVID-19 tests are RATs, but some Indian states, including the large states of Uttar Pradesh (pop. 227.9 million) and Bihar (pop. 121.3 million) use a much higher proportion of such tests. Here we show, using simulations based on epidemiological network models, that the judicious use of RATs can yield epidemiological outcomes comparable to those obtained through RT-PCR-based testing and isolation of positives, provided a few conditions are met. These are (a) that RAT test sensitivity is not too low, (b) that a reasonably large fraction of the population, of order 0.5% per day, can be tested, (c) that those testing positive are isolated for a sufficient duration, and that (d) testing is accompanied by other non-pharmaceutical interventions for increased effectiveness. We assess optimal testing regimes, taking into account test sensitivity and specificity, background seroprevalence and current test pricing. We find, surprisingly, that even 100% RAT test regimes should be acceptable, from both an epidemiological as well as a economic standpoint, provided the conditions outlined above are met.


Subject(s)
COVID-19 Testing , COVID-19 , Models, Statistical , Antigens, Viral/analysis , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing/methods , COVID-19 Testing/standards , COVID-19 Testing/statistics & numerical data , Computational Biology , Humans , India , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
11.
Bone ; 147: 115933, 2021 06.
Article in English | MEDLINE | ID: mdl-33757899

ABSTRACT

Studies of the potential role of bisphosphonates in dentistry date back to physical chemical research in the 1960s, and the genesis of the discovery of bisphosphonate pharmacology in part can be linked to some of this work. Since that time, parallel research on the effects of bisphosphonates on bone metabolism continued, while efforts in the dental field included studies of bisphosphonate effects on dental calculus, caries, and alveolar bone loss. While some utility of this drug class in the dental field was identified, leading to their experimental use in various dentrifice formulations and in some dental applications clinically, adverse effects of bisphosphonates in the jaws have also received attention. Most recently, certain bisphosphonates, particularly those with strong bone targeting properties, but limited biochemical effects (low potency bisphosphonates), are being studied as a local remedy for the concerns of adverse effects associated with other more potent members of this drug class. Additionally, low potency bisphosphonate analogs are under study as vectors to target active drugs to the mineral surfaces of the jawbones. These latter efforts have been devised for the prevention and treatment of oral problems, such as infections associated with oral surgery and implants. Advances in the utility and mechanistic understanding of the bisphosphonate class may enable additional oral therapeutic options for the management of multiple aspects of dental health.


Subject(s)
Bone Density Conservation Agents , Drug-Related Side Effects and Adverse Reactions , Bone and Bones , Dentistry , Diphosphonates/adverse effects , Humans
12.
Br J Pharmacol ; 178(9): 2008-2025, 2021 05.
Article in English | MEDLINE | ID: mdl-32876338

ABSTRACT

Advances in the design of potential bone-selective drugs for the treatment of various bone-related diseases are creating exciting new directions for multiple unmet medical needs. For bone-related cancers, off-target/non-bone toxicities with current drugs represent a significant barrier to the quality of life of affected patients. For bone infections and osteomyelitis, bacterial biofilms on infected bones limit the efficacy of antibiotics because it is hard to access the bacteria with current approaches. Promising new experimental approaches to therapy, based on bone-targeting of drugs, have been used in animal models of these conditions and demonstrate improved efficacy and safety. The success of these drug-design strategies bodes well for the development of therapies with improved efficacy for the treatment of diseases affecting the skeleton. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.


Subject(s)
Diphosphonates , Pharmaceutical Preparations , Animals , Bacteria , Biofilms , Humans , Quality of Life
13.
Bioorg Med Chem Lett ; 28(18): 3105-3112, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30097368

ABSTRACT

ß-Lactams are the most important class of antibiotics, for which the emergence of resistance threatens their utility. As such, we explored the extent to which the tetramic acid motif, frequently found in naturally occurring antibiotics, can be used to generate novel ß-lactam antibiotics with improved antibacterial activity. We synthesized new ampicillin - tetramic acid, cephalosporin - tetramic acid, and cephamycin - tetramic acid analogs and evaluated their activities against problematic Gram-positive and Gram-negative pathogens. Amongst the analogs, a 7-aminocephalosporanic acid analog, 3397, and a 7-amino-3-vinyl cephalosporanic acid, 3436, showed potent activities against S. aureus NRS 70 (MRSA) with MICs of 6.25 µg/mL and 3.13 µg/mL respectively. These new analogs were ≥16-fold more potent than cefaclor and cephalexin. Additionally, a Δ2 cephamycin - tetramic acid analog 3474 which contained a basic guanidinium substituent at the 5-position of the tetramic acid core displayed potent activity against several clinical strains of K. pneumoniae and E. coli.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Lactams/pharmacology , Pyrrolidinones/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Lactams/chemistry , Microbial Sensitivity Tests , Molecular Structure , Pyrrolidinones/chemistry , Structure-Activity Relationship
14.
J Antibiot (Tokyo) ; 70(1): 65-72, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27189120

ABSTRACT

Exploiting iron-uptake pathways by conjugating ß-lactam antibiotics with iron-chelators, such as catechol and hydroxamic acid is a proven strategy to overcome permeability-related resistance in Gram-negative bacteria. As naturally occurring iron-chelating tetramic acids have not been previously examined for this purpose, an exploratory series of novel ampicillin-tetramic acid hybrids that structurally resemble ureidopenicillins was designed and synthesized. The new analogs were evaluated for the ability to chelate iron and their MIC activities determined against a representative panel of clinically significant bacterial pathogens. The tetramic acid ß-lactam hybrids demonstrated a high affinity to iron in the order of 10-30 M3. The hybrids were less active against Gram-positive bacteria. However, against Gram-negative bacteria, their activity was species dependent with several hybrids displaying improved activity over ampicillin against wild-type Pseudomonas aeruginosa. The anti-Gram-negative activities of the hybrids improved in the presence of clavulanic acid revealing that the tetramic acid moiety did not provide added protection against ß-lactamases. In addition, the hybrids were found to be efflux pump substrates as their activities markedly improved against pump-inactivated strains. Unlike the catechol and hydroxamic acid siderophore ß-lactam conjugates, the activities of the hybrids did not improve under iron-deficient conditions. These results suggest that the tetramic acid hybrids gain permeability via different membrane receptors, or they are outcompeted by native bacterial siderophores with stronger affinities for iron. This study provides a foundation for the further exploitation of the tetramic acid moiety to achieve novel ß-lactam anti-Gram-negative agents, providing that efflux and ß-lactamase mediated resistance is addressed.


Subject(s)
Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Pyrrolidinones/pharmacology , Ampicillin/administration & dosage , Ampicillin/chemical synthesis , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemical synthesis , Drug Design , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Pyrrolidinones/administration & dosage , Pyrrolidinones/chemical synthesis , Siderophores/metabolism , Species Specificity , beta-Lactamases/metabolism , beta-Lactams/administration & dosage , beta-Lactams/chemical synthesis , beta-Lactams/pharmacology
15.
PLoS One ; 11(5): e0154932, 2016.
Article in English | MEDLINE | ID: mdl-27183222

ABSTRACT

In order to expand the repertoire of antifungal compounds a novel, high-throughput phenotypic drug screen targeting fungal phosphatidylserine (PS) synthase (Cho1p) was developed based on antagonism of the toxin papuamide A (Pap-A). Pap-A is a cyclic depsipeptide that binds to PS in the membrane of wild-type Candida albicans, and permeabilizes its plasma membrane, ultimately causing cell death. Organisms with a homozygous deletion of the CHO1 gene (cho1ΔΔ) do not produce PS and are able to survive in the presence of Pap-A. Using this phenotype (i.e. resistance to Pap-A) as an indicator of Cho1p inhibition, we screened over 5,600 small molecules for Pap-A resistance and identified SB-224289 as a positive hit. SB-224289, previously reported as a selective human 5-HT1B receptor antagonist, also confers resistance to the similar toxin theopapuamide (TPap-A), but not to other cytotoxic depsipeptides tested. Structurally similar molecules and truncated variants of SB-224289 do not confer resistance to Pap-A, suggesting that the toxin-blocking ability of SB-224289 is very specific. Further biochemical characterization revealed that SB-224289 does not inhibit Cho1p, indicating that Pap-A resistance is conferred by another undetermined mechanism. Although the mode of resistance is unclear, interaction between SB-224289 and Pap-A or TPap-A suggests this screening assay could be adapted for discovering other compounds which could antagonize the effects of other environmentally- or medically-relevant depsipeptide toxins.


Subject(s)
Antifungal Agents/pharmacology , Depsipeptides/pharmacology , Piperidones/pharmacology , Spiro Compounds/pharmacology , Antifungal Agents/chemistry , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/antagonists & inhibitors , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/metabolism , Candida albicans/drug effects , Depsipeptides/chemistry , Drug Antagonism , Drug Discovery , Drug Resistance, Fungal , High-Throughput Screening Assays , Microbial Sensitivity Tests , Molecular Structure , Piperidones/chemistry , Spiro Compounds/chemistry
16.
J Antimicrob Chemother ; 70(11): 3061-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26286574

ABSTRACT

OBJECTIVES: Metronidazole, a mainstay treatment for Clostridium difficile infection (CDI), is often ineffective for severe CDI. Whilst this is thought to arise from suboptimal levels of metronidazole in the colon due to rapid absorption, empirical validation is lacking. In contrast, reutericyclin, an antibacterial tetramic acid from Lactobacillus reuteri, concentrates in the gastrointestinal tract. In this study, we modified metronidazole with reutericyclin's tetramic acid motif to obtain non-absorbed compounds, enabling assessment of the impact of pharmacokinetics on treatment outcomes. METHODS: A series of metronidazole-bearing tetramic acid substituents were synthesized and evaluated in terms of anti-C. difficile activities, gastric permeability, in vivo pharmacokinetics, efficacy in the hamster model of CDI and mode of action. RESULTS: Most compounds were absorbed less than metronidazole in cell-based Caco-2 permeability assays. In hamsters, lead compounds compartmentalized in the colon rather than the bloodstream with negligible levels detected in the blood, in direct contrast with metronidazole, which was rapidly absorbed into the blood and was undetectable in caecum. Accordingly, four leads were more efficacious (P < 0.05) than metronidazole in C. difficile-infected animals. Improved efficacy was not due to an alternative mode of action, as the leads retained the mode of action of metronidazole. CONCLUSIONS: This study provides the clearest empirical evidence that the high absorption of metronidazole lowers treatment outcomes for CDI and suggests a role for the tetramic acid motif for colon-specific drug delivery. This approach also has the potential to lower systemic toxicity and drug interactions of nitroheterocyclic drugs for treating gastrointestine-specific diseases.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Clostridioides difficile/drug effects , Clostridium Infections/drug therapy , Colon/chemistry , Metronidazole/pharmacokinetics , Pyrrolidinones/pharmacokinetics , Tenuazonic Acid/analogs & derivatives , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Disease Models, Animal , Male , Mesocricetus , Metronidazole/administration & dosage , Metronidazole/chemistry , Pyrrolidinones/chemistry , Tenuazonic Acid/chemistry , Tenuazonic Acid/pharmacokinetics , Treatment Outcome
17.
J Biol Chem ; 290(31): 18874-88, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-25995447

ABSTRACT

The obligate intracellular parasite Chlamydia trachomatis has a reduced genome and is thought to rely on its mammalian host cell for nutrients. Although several lines of evidence suggest C. trachomatis utilizes host phospholipids, the bacterium encodes all the genes necessary for fatty acid and phospholipid synthesis found in free living Gram-negative bacteria. Bacterially derived phospholipids significantly increased in infected HeLa cell cultures. These new phospholipids had a distinct molecular species composition consisting of saturated and branched-chain fatty acids. Biochemical analysis established the role of C. trachomatis-encoded acyltransferases in producing the new disaturated molecular species. There was no evidence for the remodeling of host phospholipids and no change in the size or molecular species composition of the phosphatidylcholine pool in infected HeLa cells. Host sphingomyelin was associated with C. trachomatis isolated by detergent extraction, but it may represent contamination with detergent-insoluble host lipids rather than being an integral bacterial membrane component. C. trachomatis assembles its membrane systems from the unique phospholipid molecular species produced by its own fatty acid and phospholipid biosynthetic machinery utilizing glucose, isoleucine, and serine.


Subject(s)
Cardiolipins/biosynthesis , Cell Membrane/metabolism , Chlamydia trachomatis/metabolism , Phosphatidylethanolamines/biosynthesis , Acyltransferases/metabolism , Bacterial Proteins/metabolism , Biosynthetic Pathways , Chlamydia Infections/microbiology , HeLa Cells , Host-Pathogen Interactions , Humans , Lipogenesis
18.
Sci Rep ; 4: 4721, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24739957

ABSTRACT

Whilst the development of membrane-active antibiotics is now an attractive therapeutic concept, progress in this area is disadvantaged by poor knowledge of the structure-activity relationship (SAR) required for optimizing molecules to selectively target bacteria. This prompted us to explore the SAR of the Lactobacillus reuteri membrane-active antibiotic reutericyclin, modifying three key positions about its tetramic acid core. The SAR revealed that lipophilic analogs were generally more active against Gram-positive pathogens, but introduction of polar and charged substituents diminished their activity. This was confirmed by cytometric assays showing that inactive compounds failed to dissipate the membrane potential. Radiolabeled substrate assays indicated that dissipation of the membrane potential by active reutericyclins correlated with inhibition of macromolecular synthesis in cells. However, compounds with good antibacterial activities also showed cytotoxicity against Vero cells and hemolytic activity. Although this study highlights the challenge of optimizing membrane-active antibiotics, it shows that by increasing antibacterial potency the selectivity index could be widened, allowing use of lower non-cytotoxic doses.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria/drug effects , Membranes/drug effects , Tenuazonic Acid/analogs & derivatives , Animals , Anti-Bacterial Agents/chemistry , Chlorocebus aethiops , Humans , Limosilactobacillus reuteri/chemistry , Membranes/chemistry , Structure-Activity Relationship , Tenuazonic Acid/chemistry , Tenuazonic Acid/pharmacology , Vero Cells
19.
J Antimicrob Chemother ; 68(4): 806-15, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23264511

ABSTRACT

OBJECTIVES: The stationary phase of Clostridium difficile, which is primarily responsible for diarrhoeal symptoms, is refractory to antibiotic killing. We investigated whether disrupting the functions of the clostridial membrane is an approach to control C. difficile infections by promptly removing growing and non-growing cells. METHODS: The bactericidal activities of various membrane-active agents were determined against C. difficile logarithmic-phase and stationary-phase cultures and compared with known antibiotics. Their effects on the synthesis of ATP, toxins A/B and sporulation were also determined. The effect of rodent caecal contents on anti-difficile activities was examined using two reutericyclin lead compounds, clofazimine, daptomycin and other comparator antibiotics. RESULTS: Most membrane-active agents and partially daptomycin showed concentration-dependent killing of both logarithmic-phase and stationary-phase cultures. The exposure of cells to compounds at their MBC resulted in a rapid loss of viability with concomitant reductions in cellular ATP, toxins A/B and spore numbers. With the exception of nisin, these effects were not due to membrane pore formation. Interestingly, the activity of the proton ionophore nigericin significantly increased as the growth of C. difficile decreased, suggesting the importance of the proton gradient to the survival of non-growing cells. The activities of the lipophilic antimicrobials reutericyclins and clofazimine were reduced by caecal contents. CONCLUSIONS: These findings indicate that C. difficile is uniquely susceptible to killing by molecules affecting its membrane function and bioenergetics, indicating that the clostridial membrane is a novel antimicrobial target for agents to alleviate the burden of C. difficile infections.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Cell Membrane/drug effects , Clostridioides difficile/drug effects , Clostridium Infections/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Load , Cecum/microbiology , Clofazimine , Clostridium Infections/microbiology , Cricetinae , Mesocricetus , Microbial Viability/drug effects , Tenuazonic Acid/administration & dosage , Tenuazonic Acid/analogs & derivatives , Tenuazonic Acid/pharmacology
20.
Bioorg Med Chem ; 20(16): 4985-94, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22795901

ABSTRACT

PlsY is the essential first step in membrane phospholipid synthesis of Gram-positive pathogens. PlsY catalyzes the transfer of the fatty acid from acyl-phosphate to the 1-position of glycerol-3-phosphate to form the first intermediate in membrane biogenesis. A series of non-metabolizable, acyl-sulfamate analogs of the acyl-phosphate PlsY substrate were prepared and evaluated as inhibitors of Staphylococcus aureus PlsY and for their Gram-positive antibacterial activities. From this series phenyl (8-phenyloctanoyl) sulfamate had the best overall profile, selectively inhibiting S. aureus phospholipid biosynthesis and causing the accumulation of both long-chain fatty acids and acyl-acyl carrier protein intermediates demonstrating that PlsY was the primary cellular target. Bacillus anthracis was unique in being more potently inhibited by long chain acyl-sulfamates than other bacterial species. However, it is shown that Bacillus anthracis PlsY is not more sensitive to the acyl-sulfamates than S. aureus PlsY. Metabolic profiling showed that B. anthracis growth inhibition by the acyl-sulfamates was not specific for lipid synthesis illustrating that the amphipathic acyl-sulfamates can also have off-target effects in Gram-positive bacteria. Nonetheless, this study further advances PlsY as a druggable target for the development of novel antibacterial therapeutics, through the discovery and validation of the probe compound phenyl (8-phenyloctanoyl) sulfamate as a S. aureus PlsY inhibitor.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus anthracis/drug effects , Enzyme Inhibitors/pharmacology , Glycerol-3-Phosphate O-Acyltransferase/antagonists & inhibitors , Staphylococcus aureus/drug effects , Sulfonic Acids/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacillus anthracis/enzymology , Bacillus anthracis/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/enzymology , Staphylococcus aureus/metabolism , Streptococcus Phages/drug effects , Streptococcus Phages/growth & development , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/growth & development , Structure-Activity Relationship , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...